Perfect Matchings in the Semirandom Graph Process
نویسندگان
چکیده
The semirandom graph process is a single player game in which the initially presented an empty on $n$ vertices. In each round, vertex $u$ to independently and uniformly at random. then adaptively selects $v$ adds edge $uv$ graph. For fixed monotone property, objective of force satisfy this property with high probability as few rounds possible. We focus problem constructing perfect matching particular, we present adaptive strategy for achieves $\beta n$ rounds, where value < 1.206$ derived from solution some system differential equations. This improves upon previously best known upper bound $(1+2/e+o(1)) \, n 1.736 rounds. also improve lower $(\ln 2 + o(1)) > 0.693 show that cannot achieve desired less than $\alpha 0.932$ another As result, gap between bounds decreased roughly four times.
منابع مشابه
perfect matchings in edge-transitive graph
we find recursive formulae for the number of perfect matchings in a graph g by splitting g into subgraphs h and q. we use these formulas to count perfect matching of p hypercube qn. we also apply our formulas to prove that the number of perfect matching in an edge-transitive graph is , where denotes the number of perfect matchings in g, is the graph constructed from by deleting edges with an en...
متن کاملPerfect Matchings in Edge-Transitive Graphs
We find recursive formulae for the number of perfect matchings in a graph G by splitting G into subgraphs H and Q. We use these formulas to count perfect matching of P hypercube Qn. We also apply our formulas to prove that the number of perfect matching in an edge-transitive graph is , where denotes the number of perfect matchings in G, is the graph constructed from by deleting edges with an en...
متن کاملRainbow perfect matchings in r-partite graph structures
A latin transversal in a square matrix of order n is a set of entries, no two in the same row or column, which are pairwise distinct. A longstanding conjecture of Ryser states that every Latin square with odd order has a latin transversal. Some results on the existence of a large partial latin transversal can be found in [11,6,16]. Mainly motivated by Ryser’s conjecture, Erdős and Spencer [8] p...
متن کاملSome perfect matchings and perfect half-integral matchings in NC
We show that for any class of bipartite graphs which is closed under edge deletion and where the number of perfect matchings can be counted in NC, there is a deterministic NC algorithm for finding a perfect matching. In particular, a perfect matching can be found in NC for planar bipartite graphs and K3,3-free bipartite graphs via this approach. A crucial ingredient is part of an interior-point...
متن کاملPerfect Matchings and Perfect Powers
In the last decade there have been many results about special families of graphs whose number of perfect matchings is given by perfect or near perfect powers (N. Elkies et al., J. Algebraic Combin. 1 (1992), 111– 132; B.-Y. Yang, Ph.D. thesis, Department of Mathematics, MIT, Cambridge, MA, 1991; J. Propp, New Perspectives in Geometric Combinatorics, Cambridge University Press, 1999). In this pa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Discrete Mathematics
سال: 2022
ISSN: ['1095-7146', '0895-4801']
DOI: https://doi.org/10.1137/21m1446939